THE EVOLVING ROLE OF BONE-GRAFT SUBSTITUTES

AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS
77TH ANNUAL MEETING
MARCH 9 - 13, 2010
NEW ORLEANS, LOUISIANA

ORTHOPAEDIC DEVICE FORUM

PREPARED BY:
A. Seth Greenwald, D.Phil.(Oxon)
Scott D. Boden, M.D.
Robert L. Barrack, M.D.
Mathias P.G. Bostrom, M.D.
Victor M. Goldberg, M.D.
Michael J. Yaszemski, M.D.
Christine S. Heim, B.Sc.

ACKNOWLEDGEMENTS:
AlloSource
Biomet Osteobiologics
DePuy Spine
Exactech, Inc.
Integra/IsOTis OrthoBiologics
LifeNet Health
Medtronic Spinal & Biologics
Musculoskeletal Transplant Foundation
NovaBone

Orthovita, Inc.
Osteotech, Inc.
Regeneration Technologies, Inc.
Smith & Nephew
Stryker Biotech
Synthes USA
Wright Medical Technology, Inc.
Zimmer, Inc.

A REALITY CHECK

It is estimated that more than 500,000 bone-grafting procedures are performed annually in the United States, with approximately half of these procedures related to spine fusion. These numbers easily double on a global basis and indicate a shortage in the availability of musculoskeletal donor tissue traditionally used in these reconstructions. (Figure 1)

This reality has stimulated a proliferation of corporate interest in supplying what is seen as a growing market in bone replacement materials. (Figure 2) These graft alternatives are subjected to varying degrees of regulatory scrutiny, and thus their true effectiveness in patients may not be known prior to their use by orthopaedic surgeons. It is important to gain insight into this emerging class of bone-graft alternatives.

THE PHYSIOLOGY OF BONE GRAFTING

The biology of bone grafts and their substitutes is appreciated from an understanding of the bone formation processes of Osteogenesis, Osteoinduction and Osteoconduction.

*Graft Osteogenesis:* The cellular elements within a donor graft, which survive transplantation and synthesize new bone at the recipient site.

*Graft Osteoinduction:* New bone realized through the active recruitment of host mesenchymal stem cells from the surrounding tissue, which differentiate into bone-forming osteoblasts. This process is facilitated by the presence of growth factors within the graft, principally bone morphogenic proteins (BMPs).

*Graft Osteoconduction:* The facilitation of a bone healing process into a defined passive trellis structure.

All bone graft and bone-graft substitute materials can be described through these processes.

While fresh autologous graft has the capability of supporting new bone growth by all three means, it may not be necessary for a bone graft replacement to inherently have all three properties in order to be clinically effective. When inductive molecules are locally delivered on a scaffold, mesenchymal stem cells are ultimately attracted to the site and are capable of reproducibly inducing new bone formation, provided minimal concentration and dose thresholds are met. In some clinical studies, osteoinductive agents have been shown to potentially perform equivalent or superiorly to autograft demonstrating efficacy as an autograft replacement.

However, bone marrow aspirate applied to osteoconductive scaffolds are still reliant on the local mechanical and biological signals in order to ultimately form bone. For this reason, these materials are typically used as an adjunct in order to retain efficacy equivalent to autograft.

Similarly, osteoconductive materials work well when filling non-critical size defects that would normally heal easily. However, in more challenging critical size defects, either fresh autologous bone graft or osteoinductive agents appear necessary for healing.
BONE AUTOGRRAFTS

Fresh autogenous cancellous and, to a lesser degree, cortical bone are benchmark graft materials that allograft and bone substitutes attempt to match in \textit{in vivo} performance. They incorporate all of the mentioned properties, are harvested at both primary and secondary surgical sites, and have no associated risk of viral transmission. Furthermore, they offer structural support to implanted devices and, ultimately, become mechanically efficient structures as they are incorporated into surrounding bone through creeping substitution. However, the availability of autografts is limited and harvest is often associated with donor-site morbidity.

BONE ALLOGRAFTS

The advantages of bone allograft recovered from deceased donor sources include its ready availability in various shapes and sizes, avoidance of the need to sacrifice host structures, and there is no donor-site morbidity. Bone allografts are distributed through regional tissue banks and by most major orthopaedic and spinal companies. Still, the grafts are not without controversy, particularly regarding their association with the transmission of infectious agents. Some tissue processors incorporate methods that may eliminate the risk. However, uncontrolled and unvalidated processing and irradiation protocols may alter graft biomechanical and biochemical properties. It is critical to know your tissue bank provider to ensure their processing and preservation methods inactivate viruses but do not negatively alter the biomechanical and biochemical properties of the tissues intended for a particular clinical use. A comparison of properties of allograft and autograft bone is shown in Figure 3. Often, in complex surgical reconstructions, these materials are used in tandem with implants and fixation devices. (Figure 4)

<table>
<thead>
<tr>
<th>Bone Graft</th>
<th>Structural Strength</th>
<th>Osteo-Induction</th>
<th>Osteo-Induction</th>
<th>Osteogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autograft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancellous</td>
<td>No</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Cortical</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Allograft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancellous Frozen</td>
<td>No</td>
<td>++</td>
<td>+</td>
<td>No</td>
</tr>
<tr>
<td>Freeze-Dry Frozen</td>
<td>No</td>
<td>++</td>
<td>+</td>
<td>No</td>
</tr>
<tr>
<td>Cortical Frozen</td>
<td>+++</td>
<td>+</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Freeze-Dry Frozen</td>
<td>+</td>
<td>+</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Demineralized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allogeneic</td>
<td>No</td>
<td>+</td>
<td>++</td>
<td>No</td>
</tr>
<tr>
<td>Cancellous Chips</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Comparative properties of bone grafts

![Figure 4](a) (b) (c) (d)

(a) A 17-year old patient with osteosarcoma of the distal femur with no extraosseous extension or metastatic disease. Following chemotherapy, (b) limb salvage with wide resection was performed. Femoral reconstruction with the use of an autogenous cortical fibular graft, iliac crest bone chips, morselized cancellous autograft and structural allograft combined with internal fixation. (c) Graft incorporation and remodeling are seen at 3 years. (d) Limb restoration is noted at 10 years following resection. (The intramedullary rod was removed at 5 years.)
BONE GRAFT SUBSTITUTES

The ideal bone-graft substitute is biocompatible, bioresorbable, osteoconductive, osteoinductive, structurally similar to bone, easy to use, and cost-effective. Within these parameters a growing number of bone graft alternatives are commercially available for orthopaedic applications, including reconstruction of cavitory bone deficiency and augmentation in situations of segmental bone loss and spine fusion. They are variable in their composition and their claimed mechanisms of action. A series of case examples demonstrate their mechanisms of action through the healing process. (Figures 5-8)

Figure 5: (a) A 65-year old female with a 1.5 year history of severe low back pain diagnosed with Grade I spondylolisthesis of the L4 on L5, bilateral neural foraminal stenosis and central stenosis impacting the L3-S1 levels. (b) X-ray after 1 month of treatment with Integra Mozaik™ Strip containing bone marrow aspirate (BMA) on the left posterolateral gutter and autograft on the right side. (c) CT scan after 17 months postoperative shows bilateral fusion across the three levels.

Figure 6: (a) A 58-year old obese female with a nonunion of the right femur after falling from a horse. Treatments included plating with cortical struts and DBM. (b) Nine months following third surgery the plate and several screws are broken. (c) Three months after treatment with IM rod fixation and OP-1® Implant (Stryker Biotech, Hopkinton, MA) she was full weight bearing, with full range of motion and pain free. (d) Nine months postoperative.
BURDEN OF PROOF

It is reasonable to assume that not all bone-graft alternatives will perform the same. This presents a challenging choice for the orthopaedic surgeon. As a first principle, it is important to appreciate that different healing environments (e.g., a metaphyseal defect, a long-bone fracture, an interbody spine fusion, or a posterolateral spine fusion) have different levels of difficulty in forming new bone. For example, a metaphyseal defect will permit the successful use of many purely osteoconductive materials. In contrast, a posterolateral spine fusion will not succeed if purely osteoconductive materials are used as a stand-alone substitute. Thus, validation of any bone-graft alternative in one clinical site may not necessarily predict its performance in another location.

A second principle is to seek the highest burden of proof reported from clinical and preclinical studies to justify the use of an osteoinductive graft material or the choice of one alternative over another. It is generally more difficult to make bone in humans than it is in larger order animals. Only human trials can determine the efficacy of bone-graft substitutes in humans as well as their site-specific effectiveness. In this latter context, surgeons should practice evidence-based medicine and tailor treatment for patients based on the published medical literature and the levels of evidence claimed. (Wright JG, Swiontkowski MF, Heckman JD. Introducing levels of evidence to the journal. J Bone Joint Surg Am. 2003 Jan;85(1):1-3.)

Figure 7: (a) AP and Lateral radiographs, 67-year old female with depressed fracture of the lateral tibial plateau. (b) AP and Lateral radiographs 12 months after ORIF with filling the defect with Norian® SRS® (Synthes USA, Paoli, PA). No loss of reduction of the plateau surface is noted, fracture completely healed.

Figure 8: (a) A 29-year old male with a Grade IIIIB oblique fracture of the distal tibia from a motorcycle accident. (b) Six weeks after being treated with an unreamed locked nail and INFUSE® Bone Graft (Medtronic Spinal & Biologics, Memphis, TN). (c) Patient full weight bearing and radiographically healed 20 weeks post-operative.
A third principle requiring burden of proof specifically pertains to products that are not subjected to high levels of regulatory scrutiny, such as 100% demineralized bone matrix (DBM) or platelet gels containing “autologous growth factors.” Such products are considered to involve minimal manipulation of cells or tissue and are thus regulated as tissue rather than as devices. When DBM products include additives, they require 510(k) clearance. As a result, there is no standardized level of proof of safety and effectiveness required before these products are marketed and are used in patients. While these products may satisfy regulatory requirements, testing in relevant animal models is limited or absent and there is a risk that they will not produce the expected results in humans.

FUTURE

FDA approvals include the use of PMA approved rhBMP-2 (INFUSE® Bone Graft) as an autograft replacement in spinal fusion and treatment of open tibia fractures; rhBMP-7 (OP-1® Implant) is Humanitarian Use Device (HDE) approved as an alternative to autograft in recalcitrant long bone nonunions where the use of autograft is unfeasible and alternative treatments have failed; and rhBMP-7 (OP-1® Putty) is HDE approved as an alternative to autograft in compromised patients requiring revision posterolateral (intertransverse) lumbar spinal fusion, for whom autologous bone and bone marrow harvest are not feasible or are not expected to promote fusion. These clinical applications demonstrate impressive osteoinductive capacity and pave the way for broader clinical applications. Their methods of administration include direct placement in the surgical site, but results have been more promising when the growth factors have been administered in combination with substrates to facilitate timed-release delivery and/or provide a material scaffold for bone formation. FDA regulatory imperatives will continue to determine their availability. Their cost/benefit ratio will ultimately influence clinical use.

Further advances in tissue engineering, “the integration of the biological, physical and engineering sciences,” will create new carrier constructs that regenerate and restore tissue to its functional state. These constructs are likely to encompass additional families of growth factors, evolving biological scaffolds and incorporation of mesenchymal stem cells. Ultimately, the development of ex vivo bioreactors capable of bone manufacture with the appropriate biomechanical cues will provide tissue-engineered constructs for direct use in the skeletal system.

TAKE HOME MESSAGE

- The increasing number of bone-grafting procedures performed annually in the U.S. has created a shortage of cadaver allograft material and a need to increase musculoskeletal tissue donation.
- This has stimulated corporate interest in developing and supplying a rapidly expanding number of bone-graft substitutes, the makeup of which includes natural, synthetic, human and animal-derived materials.
- Fresh autogenous cancellous and, to a lesser degree, cortical bone are the benchmark graft materials. Their shortcomings include limited availability and donor-site morbidity.
- The advantages of allograft bone include availability in various sizes and shapes as well as avoidance of host structure sacrifice and donor-site morbidity. Transmission of infection, particularly the human immunodeficiency virus (HIV) has been virtually eliminated as a concern. The properties of the allograft should be confirmed with the tissue provider to ensure they correspond with their intended clinical use.
- The ideal bone-graft substitute is biocompatible, bioresorbable, osteoconductive, osteoinductive, structurally similar to bone, easy to use, and cost-effective. Currently marketed products are variable in their composition and their claimed mechanisms of action. It is reasonable that not all bone-graft substitute products will perform the same.
- FDA approvals for specific uses of recombinant human growth factors (rhBMP-2 (INFUSE® Bone Graft) and rhBMP-7 (OP-1® Implant and OP-1® Putty)) are based on demonstrated bone repair in human trials. Other applications will likely emerge.
- The orthopaedic surgeon has many choices for bone grafting. Caveat emptor! Selection should be based on reasoned burdens of proof. These include examination of the product claims and whether they are supported by preclinical and human studies in site-specific locations where they are to be utilized in surgery. It is imperative to appreciate the level of evidence claimed in the latter studies.
<table>
<thead>
<tr>
<th>Company</th>
<th>Commercially available product</th>
<th>Composition</th>
<th>Commercially available forms</th>
<th>Claimed mechanisms of action</th>
<th>Burdens of proof</th>
<th>FDA status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlloSource</td>
<td>AlloFuse™</td>
<td>Heat sensitive copolymer with DBM</td>
<td>Injectable gel and putty</td>
<td>• Osteoconduction</td>
<td>• Case reports</td>
<td>510(k) cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Biodegradable</td>
<td>• Animal studies</td>
<td>Bone Graft Extender</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteoinduction</td>
<td>• Cell culture</td>
<td>Bone Void Filler</td>
</tr>
<tr>
<td>Biomet Osteobiologics</td>
<td>BonePlast®</td>
<td>Calcium sulfate with or without HA/CC composite granules</td>
<td>Various volumes of powder and setting solution</td>
<td>• Osteoconduction</td>
<td>• Case reports</td>
<td>510(k) cleared</td>
</tr>
<tr>
<td></td>
<td>BonePlast® Quick Set</td>
<td>Calcium sulfate</td>
<td>Quick setting paste</td>
<td>• Osteoconductive</td>
<td>• Case reports</td>
<td>Bone Void Filler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Biodegradable</td>
<td>• Animal studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteoinduction</td>
<td>• Cell culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Case reports</td>
<td>• Human studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Animal studies</td>
<td>• Peer-reviewed human studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Human studies</td>
<td>• Published studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Animal studies</td>
<td>• Case reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Human studies</td>
<td>• Animal studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Human studies</td>
<td>• Every lot tested for osteoinduction</td>
<td>Bone Void Filler</td>
</tr>
<tr>
<td></td>
<td>ProOsteon® 500R</td>
<td>Coralline-derived HA/CC composite granules</td>
<td>Granular or block</td>
<td>• Osteoconduction</td>
<td>• Human studies</td>
<td>510(k) cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Biodegradable</td>
<td>• Case reports</td>
<td>Bone Void Filler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteoinduction</td>
<td>• Animal studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Case reports</td>
<td>• Human studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Animal studies</td>
<td>• Peer-reviewed human studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Human studies</td>
<td>• Published studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Animal studies</td>
<td>• Case reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Human studies</td>
<td>• Animal studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Human studies</td>
<td>• Every lot tested for osteoinduction</td>
<td></td>
</tr>
<tr>
<td>DePuy Spine</td>
<td>CONDUIT® TCP Granules</td>
<td>100% β-TCP</td>
<td>Granules</td>
<td>• Osteoconduction</td>
<td>• Case reports</td>
<td>510(k) cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Biodegradable</td>
<td>• Animal studies</td>
<td>Bone Void Filler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteoinduction</td>
<td>• Cell culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Case reports</td>
<td>• Human studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Animal studies</td>
<td>• Peer-reviewed human studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Human studies</td>
<td>• Published studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Animal studies</td>
<td>• Case reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Human studies</td>
<td>• Animal studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Human studies</td>
<td>• Every lot tested for osteoinduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEALOS® Bone Graft Replacement</td>
<td>Mineralized collagen matrix</td>
<td>Variety of strip sizes</td>
<td>• Osteoconduction</td>
<td>• Human studies</td>
<td>510(k) cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Creeping substitution</td>
<td>• Case reports</td>
<td>Bone Graft Extender</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteoinduction</td>
<td>• Animal studies</td>
<td>Bone Void Filler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteogenesis when mixed with bone marrow aspirate</td>
<td>• Peer-reviewed, published human studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Human studies</td>
<td>• Case reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Animal studies</td>
<td>• Peer-reviewed human studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Human studies</td>
<td>• Published studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Animal studies</td>
<td>• Case reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Human studies</td>
<td>• Animal studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Human studies</td>
<td>• Every lot tested for osteoinduction</td>
<td></td>
</tr>
<tr>
<td>Exactech</td>
<td>Optecure®</td>
<td>DBM suspended in a hydrogel carrier</td>
<td>Dry mix kit delivered with buffered saline</td>
<td>• Osteoconduction</td>
<td>• Human studies</td>
<td>510(k) cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Biodegradable</td>
<td>• Case reports</td>
<td>Bone Graft Extender</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteoinduction</td>
<td>• Animal studies</td>
<td>Bone Void Filler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteogenesis when mixed with autogenous bone graft</td>
<td>• Human studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optecure® + CCC</td>
<td>DBM and CCC suspended in a hydrogel carrier</td>
<td>Dry mix kit delivered with buffered saline</td>
<td>• Osteoconduction</td>
<td>• Human studies</td>
<td>510(k) cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Biodegradable</td>
<td>• Case reports</td>
<td>Bone Graft Extender</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteoinduction</td>
<td>• Animal studies</td>
<td>Bone Void Filler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteogenesis when mixed with autogenous bone graft</td>
<td>• Human studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optefil®</td>
<td>DBM suspended in gelatin carrier</td>
<td>Injectable bone paste-dry powder ready to be hydrated</td>
<td>• Osteoconduction</td>
<td>• Human studies</td>
<td>510(k) cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Biodegradable</td>
<td>• Case reports</td>
<td>Bone Graft Extender</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteoinduction</td>
<td>• Animal studies</td>
<td>Bone Void Filler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteogenesis when mixed with autogenous bone graft</td>
<td>• Human studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opteform®</td>
<td>DBM and cortical cancellous chips suspended in gelatin carrier</td>
<td>Formable putty or dry powder ready to be hydrated</td>
<td>• Osteoconduction</td>
<td>• Human studies</td>
<td>510(k) cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Biodegradable</td>
<td>• Case reports</td>
<td>Bone Graft Extender</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteoinduction</td>
<td>• Animal studies</td>
<td>Bone Void Filler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteogenesis when mixed with autogenous bone graft</td>
<td>• Human studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OpteMx™</td>
<td>HA/TCP biphasic combination</td>
<td>Granules, sticks, rounded wedges, wedges and cylinders in several sizes</td>
<td>• Osteoconduction</td>
<td>• Human studies</td>
<td>510(k) cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Biodegradable</td>
<td>• Case reports</td>
<td>Bone Graft Extender</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteoinduction</td>
<td>• Animal studies</td>
<td>Bone Void Filler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Osteogenesis and limited osteoinduction when mixed with bone marrow aspirate</td>
<td>• Human studies</td>
<td></td>
</tr>
</tbody>
</table>

β-TCP - β-tricalcium phosphate  
CCC - Cortical cancellous chips  
HA/CC - Hydroxapatite/calcium carbonate  
CBM - Cancellous bone matrix  
DBM - Demineralized bone matrix  
PMA – Pre-Market Application; HDE – Humanitarian Device Exemption
<table>
<thead>
<tr>
<th>Company</th>
<th>Commercially available product</th>
<th>Composition</th>
<th>Commercially available forms</th>
<th>Claimed mechanisms of action</th>
<th>Burdens of proof</th>
<th>FDA status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accell Connexus®</td>
<td>DBM, Accell Bone Matrix, Reverse Phase Medium</td>
<td>Injectable putty</td>
<td>• Osteoconduction • Bioresorbable • Osteoinduction</td>
<td>• Human studies • Case reports • Animal studies • Every DBM lot tested for osteoinduction</td>
<td>510(k) cleared Extremities, Pelvis • Bone Void Filler Extremities, Pelvis, Spine • Bone Graft Extender</td>
<td></td>
</tr>
<tr>
<td>Accell Evo3™</td>
<td>DBM, Accell Bone Matrix, Reverse Phase Medium</td>
<td>Injectable putty</td>
<td>• Osteoconduction • Bioresorbable • Osteoinduction</td>
<td>• Animal studies • Every DBM lot tested for osteoinduction</td>
<td>510(k) cleared Extremities, Pelvis • Bone Void Filler Extremities, Pelvis, Spine • Bone Graft Extender</td>
<td></td>
</tr>
<tr>
<td>Accell TBM®</td>
<td>DBM, Accell Bone Matrix</td>
<td>Various sized strips</td>
<td>• Osteoconduction • Bioresorbable • Osteoinduction</td>
<td>• Human studies • Case reports • Animal studies • Every DBM lot tested for osteoinduction</td>
<td>510(k) cleared Extremities, Pelvis • Bone Void Filler Extremities, Pelvis, Spine • Bone Graft Extender</td>
<td></td>
</tr>
<tr>
<td>DynaGraft II</td>
<td>DBM, Reverse Phase Medium</td>
<td>Injectable putty</td>
<td>• Osteoconduction • Bioresorbable • Osteoinduction</td>
<td>• Human studies • Case reports • Animal studies • Every DBM lot tested for osteoinduction</td>
<td>510(k) cleared Extremities, Pelvis • Bone Void Filler Extremities, Pelvis, Spine • Bone Graft Extender</td>
<td></td>
</tr>
<tr>
<td>OrthoBlast II</td>
<td>DBM, cancellous bone, Reverse Phase Medium</td>
<td>Injectable putty</td>
<td>• Osteoconduction • Bioresorbable • Osteoinduction</td>
<td>• Human studies • Case reports • Animal studies • Every DBM lot tested for osteoinduction</td>
<td>510(k) cleared Extremities, Pelvis • Bone Void Filler Extremities, Pelvis, Spine • Bone Graft Extender</td>
<td></td>
</tr>
<tr>
<td>Integra Mozaik™</td>
<td>80% highly purified β-TCP/20% highly purified Type-1 collagen</td>
<td>Strip and putty</td>
<td>• Osteoconduction • Bioresorbable</td>
<td>• Human studies • Case reports • Animal studies</td>
<td>510(k) cleared Extremities, Pelvis, Spine • Bone Void Filler</td>
<td></td>
</tr>
<tr>
<td>Life Net Health</td>
<td>IC Graft Chamber®</td>
<td>DBM particles and cancellous chips</td>
<td>Lyophilized and packaged in various sizes within a delivery chamber</td>
<td>• Osteoconduction • Bioresorbable • Osteoinduction • Designed to be used with blood, PRP or bone marrow to enhance DBM activity</td>
<td>• Regulated under CFR 1270 and 1271 as a human tissue and 510(k) cleared</td>
<td></td>
</tr>
<tr>
<td>Medtronic Spinal &amp; Biologics</td>
<td>INFUSE® Bone Graft</td>
<td>rhBMP-2 protein on an absorbable collagen sponge</td>
<td>Multiple kit sizes</td>
<td>• Bioresorbable carrier • Osteoinduction • Chemotaxis of stem cells; indirect osteogenesis</td>
<td>• Human studies (Level I and Level III data) • Case reports • Animal studies</td>
<td>PMA approved for fusion with spinal cage • PMA approved for open tibia fractures with IM nail</td>
</tr>
<tr>
<td></td>
<td>MasterGraft® Granules</td>
<td>Biphasic calcium phosphate (15% HA / 85% β-TCP)</td>
<td>Granules</td>
<td>• Osteoconduction • Bioresorbable</td>
<td>• Animal studies • Case reports</td>
<td>510(k) cleared • Bone Void Filler</td>
</tr>
<tr>
<td></td>
<td>MasterGraft® Matrix</td>
<td>Biphasic calcium phosphate and collagen</td>
<td>Compression resistant block</td>
<td>• Osteoconduction • Bioresorbable</td>
<td>• Animal studies • Case reports</td>
<td>510(k) cleared • Bone Void Filler: Must be used with autogenous bone marrow</td>
</tr>
</tbody>
</table>

β-TCP - β-tricalcium phosphate  
CCC - Cortical cancellous chips  
HA/CC - Hydroxyapatite/calcium carbonate 
CBM - Cancellous bone matrix  
DBM - Demineralized bone matrix  
PMA – Pre-Market Application; HDE – Humanitarian Device Exemption
<table>
<thead>
<tr>
<th>Company</th>
<th>Commercially available product</th>
<th>Composition</th>
<th>Commercially available forms</th>
<th>Claimed mechanisms of action</th>
<th>Burdens of proof</th>
<th>FDA status</th>
</tr>
</thead>
</table>
| Medtronic Spinal & Biologics | MasterGraft® Putty | Biphasic calcium phosphate and collagen | Moldable putty | • Osteoconduction  
• Biodegradable | Animal studies | 50(k) cleared  
- Bone Graft Extender: Must be used with autograft  
- Bone Void Filler: Must be used with autogenous bone marrow and/or autograft and/or sterile water |
| | MasterGraft® Strip | Biphasic calcium phosphate (15% HA and 85% β-TCP) and collagen | Compression resistant strip | • Osteoconduction  
• Biodegradable | Animal studies | 50(k) cleared  
- Bone Void Filler: Must be used with autogenous bone marrow |
| | Osteofill DBM | DBM in porcine gelatin | Injectable paste and moldable strips | • Osteoconduction  
• Biodegradable  
• Osteoinduction | Animal studies  
Case reports | 50(k) cleared  
- Bone Void Filler |
| | Progenix™ Plus | DBM in Type-I bovine collagen and sodium alginate | Putty with demineralized cortical bone chips | • Osteoconduction  
• Biodegradable  
• Osteoinduction | Animal studies  
Case reports | 50(k) cleared  
- Bone Graft Substitute  
- Bone Graft Extender  
- Bone Void Filler |
| | Progenix™ Putty | DBM in Type-I bovine collagen and sodium alginate | Ready to use injectable putty | • Osteoconduction  
• Biodegradable  
• Osteoinduction | Animal studies  
Case reports | 50(k) cleared  
- Bone Graft Substitute  
- Bone Graft Extender  
- Bone Void Filler |
| MTF/Orthofix | Trinity Evolution™ | Viable Cellular Bone Matrix | Multiple volumes available | • Osteogenensis  
• Osteoinduction  
• Osteoconduction | Animal Studies  
Case Reports | Regulated under CFR 1270 and 1271 as a human tissue. |
| MTF/Synthes | DBX® | DBM in sodium hyaluronate carrier | Paste, putty mix and strip | • Osteoconduction  
• Biodegradable  
• Osteoinduction | Human studies  
Case reports  
Animal studies | 50(k) cleared  
- Bone Graft Extender  
- Bone Void Filler |
| NovaBone/MIF | NovaBone® | Bioactive silicate | Particulate, putty and morsels | • Osteoconduction  
• Biodegradable  
• Osteostimuation | Published human studies  
Case reports  
Animal studies | 50(k) cleared  
- Bone Void Filler |
| Orthovita | Vitoss® | 100% β-TCP and 80% β-TCP/20% collagen and 70% β-TCP/20% collagen/10% bioactive glass | Putty, strip, flow, morsels and shapes | • Osteoconduction  
• Biodegradable  
• Osteoinduction  
• Osteostimulation  
Osteogenic and osteoinductive when mixed with bone marrow aspirate | Published human studies (Level I and III)  
Case reports  
Animal studies | 50(k) cleared  
- Bone Void Filler |

β-TCP - β-tricalcium phosphate  
CCC - Cortical cancellous chips  
HA/CC - Hydroxyapatite/calcium carbonate  
CBM - Cancellous bone matrix  
DBM - Demineralized bone matrix  
PMA – Pre-Market Application; HDE – Humanitarian Device Exemption
<table>
<thead>
<tr>
<th>Company</th>
<th>Commercially available product</th>
<th>Composition</th>
<th>Commercially available forms</th>
<th>Claimed mechanisms of action</th>
<th>Burdens of proof</th>
<th>FDA status</th>
</tr>
</thead>
</table>
| GRAFTON® A-Flex®     | DBM fiber technology                                               | Round flexible sheet                     |                              | • Osteoinduction  
• Osteoconduction  
• Incorporation/complete remodelling  
• Osteogenesis when mixed with bone marrow aspirate or autogenous bone graft | • Peer-reviewed published human studies (incl. Level I-II prospective studies)  
• Case reports  
• Animal Studies  
• Every lot tested \textit{in vivo} for osteoinduction | 510(k) cleared  
• Bone Graft Substitute  
• Bone Graft Extender  
• Bone Void Filler |
| GRAFTON® Crunch®     | DBM fibers with demineralized cortical cubes                       | Packable graft                           |                              | • Osteoinduction  
• Osteoconduction  
• Incorporation/complete remodelling  
• Osteogenesis when mixed with bone marrow aspirate or autogenous bone graft | • Peer-reviewed published human studies (incl. Level I-II prospective studies)  
• Case reports  
• Animal studies  
• Every lot tested \textit{in vivo} for osteoinduction | 510(k) cleared  
• Bone Graft Substitute  
• Bone Graft Extender  
• Bone Void Filler |
| GRAFTON® Flex®       | DBM fiber technology                                               | Various sizes of flexible sheets         |                              | • Osteoinduction  
• Osteoconduction  
• Incorporation/complete remodelling  
• Osteogenesis when mixed with bone marrow aspirate or autogenous bone graft | • Peer-reviewed published human studies (incl. Level I-II prospective studies)  
• Case reports  
• Animal studies  
• Every lot tested \textit{in vivo} for osteoinduction | 510(k) cleared  
• Bone Graft Substitute  
• Bone Graft Extender  
• Bone Void Filler |
| GRAFTON® Gel         | DBM in a syringe                                                   | MIS and Percutaneous injectable graft    |                              | • Osteoinduction  
• Osteoconduction  
• Incorporation/complete remodelling  
• Osteogenesis when mixed with bone marrow aspirate or autogenous bone graft | • Peer-reviewed published human studies (incl. Level I-II prospective studies)  
• Case reports  
• Animal studies  
• Every lot tested \textit{in vivo} for osteoinduction | 510(k) cleared  
• Bone Graft Substitute  
• Bone Graft Extender  
• Bone Void Filler |
| GRAFTON® Matrix PLF  | DBM fiber technology                                               | Single and double troughs                |                              | • Osteoinduction  
• Osteoconduction  
• Incorporation/complete remodelling  
• Osteogenesis when mixed with bone marrow aspirate or autogenous bone graft | • Peer-reviewed published human studies (incl. Level I-II prospective studies)  
• Case reports  
• Animal studies  
• Every lot tested \textit{in vivo} for osteoinduction | 510(k) cleared  
• Bone Graft Substitute  
• Bone Graft Extender  
• Bone Void Filler |
| GRAFTON® Matrix Scoliosis Strips | DBM fiber technology                                             | Various sizes of strips                  |                              | • Osteoinduction  
• Osteoconduction  
• Incorporation/complete remodelling  
• Osteogenesis when mixed with bone marrow aspirate or autogenous bone graft | • Peer-reviewed published human studies (incl. Level I-II prospective studies)  
• Case reports  
• Animal studies  
• Every lot tested \textit{in vivo} for osteoinduction | 510(k) cleared  
• Bone Graft Substitute  
• Bone Graft Extender  
• Bone Void Filler |
| GRAFTON® Orthoblend Large Defect | DBM fibers with crushed cancellous chips                  | Packable graft                           |                              | • Osteoinduction  
• Osteoconduction  
• Incorporation/complete remodelling  
• Osteogenesis when mixed with bone marrow aspirate or autogenous bone graft | • Peer-reviewed published human studies (incl. Level I-II prospective studies)  
• Case reports  
• Animal studies  
• Every lot tested \textit{in vivo} for osteoinduction | 510(k) cleared  
• Bone Graft Substitute  
• Bone Graft Extender  
• Bone Void Filler |
| GRAFTON® Orthoblend Small Defect | DBM fibers with larger cancellous chips              | Packable moldable graft                  |                              | • Osteoinduction  
• Osteoconduction  
• Incorporation/complete remodelling  
• Osteogenesis when mixed with bone marrow aspirate or autogenous bone graft | • Peer-reviewed published human studies (incl. Level I-II prospective studies)  
• Case reports  
• Animal studies  
• Every lot tested \textit{in vivo} for osteoinduction | 510(k) cleared  
• Bone Graft Substitute  
• Bone Graft Extender  
• Bone Void Filler |

\begin{tabular}{|l|l|l|l|l|l|l|}
\hline
\textbf{β-TCP} & \textbf{β-tricalcium phosphate} & \textbf{CCC} & \textbf{Cortical cancellous chips} & \textbf{HA/CC} & \textbf{Hydroxyapatite/calcium carbonate} & \\
\hline
\textbf{CBM} & \textbf{Cancellous bone matrix} & \textbf{DBM} & \textbf{Demineralized bone matrix} & \\
\hline
\textbf{PMA} & \textbf{Pre-Market Application} & \textbf{HDE} & \textbf{Humanitarian Device Exemption} & \\
\hline
\end{tabular}
<table>
<thead>
<tr>
<th>Company</th>
<th>Commercially available product</th>
<th>Composition</th>
<th>Commercially available forms</th>
<th>Claimed mechanisms of action</th>
<th>Burdens of proof</th>
<th>FDA status</th>
</tr>
</thead>
</table>
| Osteotech       | GRAFTON Plus® Paste            | DBM in a syringe                   | Injectable MIS graft, resists irrigation                                                  | • Osteoinduction  
• Osteoconduction  
• Incorporation/ complete remodelling  
• Osteogenesis when mixed with bone marrow aspirate or autogenous bone graft | • Peer-reviewed published human studies (incl. Level I-II prospective studies)  
• Case reports  
• Animal studies  
• Every lot tested in vivo for osteoinduction | 510(k) cleared  
• Bone Graft Substitute  
• Bone Graft Extender  
• Bone Void Filler |
|                 | GRAFTON® Putty                 | DBM fiber technology                | Packable moldable graft                                                               | • Osteoinduction  
• Osteoconduction  
• Incorporation/ complete remodelling  
• Osteogenesis when mixed with bone marrow aspirate or autogenous bone graft | • Peer-reviewed published human studies (incl. Level I-II prospective studies)  
• Case reports  
• Animal studies  
• Every lot tested in vivo for osteoinduction | 510(k) cleared  
• Bone Graft Substitute  
• Bone Graft Extender  
• Bone Void Filler |
| Regeneration Technologies | BioSet™                        | DBM combined with natural gelatin carrier | Injectable paste, injectable putty, strips and blocks with cortical cancellous chips | • Osteoconduction  
• Bioresorbable  
• Osteoinduction | • Human studies  
• Case reports  
• Animal studies  
• Every lot tested in vivo for osteoinduction | 510(k) cleared  
• Bone Void Filler |
| Smith & Nephew  | VIAGRAF                        | DBM combined with glycerol          | Putty, paste, gel, crunch and flex                                                    | • Osteoconduction  
• Bioresorbable  
• Osteoinduction | • Animal studies | 510(k) cleared  
• Bone Void Filler |
| Stryker Biotech | OP-1® Implant                  | rhBMP-7 with Type-1 bone collagen   | Lyophilized powder reconstituted with saline to form wet sand-like consistency        | • Bioresorbable scaffold  
• Osteoinduction | • Human studies (Level I data)  
• Case reports  
• Animal studies | HDE approval for long bone nonunions |
|                 | OP-1® Putty                    | rhBMP-7 with Type-1 bone collagen plus carboxymethyl-cellulose (putty additive) | Lyophilized powder reconstituted with saline to form wet sand-like consistency | • Bioresorbable scaffold  
• Osteoinduction | • Human studies (Level I data)  
• Case reports  
• Animal studies | HDE approval for revision posterolateral lumbar fusion |
| Synthes         | Calceon® 6                     | Calcium sulfate                    | Pellets                                                                  | • Osteoconduction  
• Bioresorbable | • Animal studies | 510(k) cleared |
|                 | chronOS®                      | β-TCP                               | Granules, blocks and wedges                                                       | • Osteoconduction  
• Bioresorbable | • Animal studies | 510(k) cleared  
• Bone Void Filler |
|                 | Norian® SRS®                   | Calcium phosphate                   | Injectable paste                                                                 | • Osteoconduction  
• Bioresorbable | • Human studies  
• Case reports  
• Animal studies | 510(k) cleared  
• Bone Void Filler |
|                 | Norian® SRS® Fast Set Putty    | Calcium phosphate                   | Moldable putty                                                                  | • Osteoconduction  
• Bioresorbable | • Human studies  
• Case reports  
• Animal studies | 510(k) cleared  
• Bone Void Filler |

β-TCP - β-tricalcium phosphate  
CCC - Cortical cancellous chips  
HA/CC - Hydroxyapatite/calcium carbonate  
CBM - Cancellous bone matrix  
DBM - Demineralized bone matrix  
PMA – Pre-Market Application; HDE – Humanitarian Device Exemption
<table>
<thead>
<tr>
<th>Company</th>
<th>Commercially available product</th>
<th>Composition</th>
<th>Commercially available forms</th>
<th>Claimed mechanisms of action</th>
<th>Burdens of proof</th>
<th>FDA status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOMATRIX®</td>
<td>DBM with/without CBM in surgical grade calcium sulfate powder</td>
<td>Various volumes of injectable/ formable putty</td>
<td>• Osteoconduction • Bioreorable • Osteoinduction</td>
<td>• Human studies • Case reports • Animal studies • Cell culture</td>
<td>510(k) cleared • Bone Void Filler</td>
<td></td>
</tr>
<tr>
<td>ALLOMATRIX® RCS</td>
<td>DBM with CACIPLEX™ technology in surgical grade calcium sulfate powder</td>
<td>Various volumes of formable putty</td>
<td>• Osteoconduction • Bioreorable • Osteoinduction</td>
<td>• Animal studies</td>
<td>510(k) cleared • Bone Void Filler</td>
<td></td>
</tr>
<tr>
<td>ALLOPURE™</td>
<td>Sterile femoral/tibial allograft</td>
<td>12mm Evans wedge 6mm Cotton wedge</td>
<td>• Osteoconduction</td>
<td>• Mechanical Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANCELLO-PURE® Wedges</td>
<td>Bovine bone</td>
<td>10mm x 50mm wedge 12mm Evans wedge 6mm Cotton wedge</td>
<td>• Osteoconduction</td>
<td>• Case reports • Animal studies</td>
<td>510(k) cleared • Bone Void Filler</td>
<td></td>
</tr>
<tr>
<td>CELLPLEX®</td>
<td>β-TCP</td>
<td>Various sized granules</td>
<td>• Osteoconduction • Bioreorable</td>
<td>• Case reports • Animal studies</td>
<td>510(k) cleared • Bone Void Filler</td>
<td></td>
</tr>
<tr>
<td>IGNITE®</td>
<td>DBM in surgical grade calcium sulfate powder to be mixed with bone marrow aspirate</td>
<td>Percutaneous graft for problem fractures</td>
<td>• Osteoconduction • Bioreorable • Osteoinduction</td>
<td>• Human studies • Case reports • Animal studies • Cell culture</td>
<td>510(k) cleared • Bone Void Filler</td>
<td></td>
</tr>
<tr>
<td>MIIG® X3</td>
<td>High strength surgical grade calcium sulfate</td>
<td>Minimally invasive injectable graft for compression fractures</td>
<td>• Osteoconduction • Bioreorable</td>
<td>• Human studies • Case reports • Animal studies</td>
<td>510(k) cleared • Bone Void Filler</td>
<td></td>
</tr>
<tr>
<td>OSTEOSET®</td>
<td>Surgical grade calcium sulfate</td>
<td>Various sized pellets</td>
<td>• Osteoconduction • Bioreorable</td>
<td>• Human studies • Case reports • Animal studies</td>
<td>510(k) cleared • Bone Void Filler</td>
<td></td>
</tr>
<tr>
<td>PRO-DENSE® Injectable Regenerative Graft</td>
<td>75% calcium sulfate and 25% calcium phosphate</td>
<td>Procedure kits, various volumes of injectable paste</td>
<td>• Osteoconduction • Bioreorable • Dense bone regeneration</td>
<td>• Human studies • Case reports • Animal studies</td>
<td>510(k) cleared • Bone Void Filler</td>
<td></td>
</tr>
<tr>
<td>PRO-STIM™ Injectable Inductive Graft</td>
<td>50% calcium sulfate, 10% calcium phosphate, and 40% DBM by weight</td>
<td>Procedure kits, various volumes of injectable paste/formable putty</td>
<td>• Osteoconduction • Bioreorable • Osteoinduction</td>
<td>• Case reports • Animal studies</td>
<td>510(k) cleared • Resorbable calcium salt bone void filler device</td>
<td></td>
</tr>
<tr>
<td>CopiOs® Bone Void Filler</td>
<td>Dibasic calcium phosphate and Type-1 collagen</td>
<td>Sponge and paste</td>
<td>• Osteoconduction • Accelerated healing vs. autograft • Bioreorable • Osteogenesis and osteoinduction when mixed with bone marrow aspirate</td>
<td>• Case reports • Animal studies</td>
<td>510(k) cleared • Bone Void Filler: Must be used with autologous blood products like blood or bone marrow</td>
<td></td>
</tr>
<tr>
<td>CopiOs® Cancellous Bone Graft</td>
<td>Bovine bone</td>
<td>Cancellous chips, cancellous cubes and cortico-cancellous wedges</td>
<td>• Osteoconduction</td>
<td>• Case reports • Animal studies</td>
<td>510(k) cleared • Bone Void Filler</td>
<td></td>
</tr>
<tr>
<td>Puros® DBM</td>
<td>Allograft DBM putty (putty with chips includes allograft chips from the same donor)</td>
<td>Putty and putty with chips</td>
<td>• Osteoconduction • Bioreorable • Osteoinduction</td>
<td>• Every lot tested in an in vivo rat assay for osteoinductive potential demonstrating bone formation in an ectopic model</td>
<td>• 100% derived from allograft tissue • Regulated under 21 CFR Parts 1270 and 1271 as a human tissue</td>
<td></td>
</tr>
</tbody>
</table>

β-TCP - β-tricalcium phosphate
CBM - Cancellous bone matrix
DBM - Demineralized bone matrix
PMA – Pre-Market Application; HDE – Humanitarian Device Exemption

AAOS 2010