ANTIBIOTIC-LOADED BONE CEMENT IN ASEPTIC TOTAL JOINT REPLACEMENT: WHYS, WHEREFORES & CAVEATS

AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS
70th Annual Meeting
February 5 - 9, 2003
New Orleans, Louisiana

COMMITTEE ON BIOLOGICAL IMPLANTS

Prepared by:
William A. Jiranek, M.D.
Arlen D. Hanssen, M.D.
A. Seth Greenwald, D.Phil.(Oxon)
INTRODUCTION

Deep wound infection following joint replacement is one of the most devastating complications facing both the physician and patient. The use of antibiotic-loaded bone cement (ALBC) is a well-accepted adjunct for treatment of an established infection. However, its use for prophylaxis in the prevention of infection remains controversial in North America.

Since the 1970’s, the use of ALBC in Europe has been extremely widespread as a method of prophylaxis in both primary and aseptic revision joint replacement surgery. This exhibit presents available data which supports the efficacy of ALBC as a method of infection prevention in joint replacement.

CURRENT PRACTICES

In the United States, the use of ALBC as a pre-mixed industrial product does not have FDA approval. As a result, there are no established standards or clinical guidelines for the use of ALBC for joint replacement prophylaxis and clinical use is extremely variable (Figure 1).

Currently, in the United States, surgeons hand mix antibiotics into bone cement at the time of surgery, however, the antibiotics and bone cements used vary causing the quality of the resultant ALBC to be variable. The disadvantages of this approach include the potential for a poor mechanical mix of antibiotic powder into the cement and a subsequent deleterious effect on elution kinetics. (Figures 2 and 3)

Figure 1. Clinical use of ALBC in primary joint replacement in the United States (1995).
Derived from: Heck, et al10

Figure 2. The affect of industrial pre-mixed Gentamicin on % shear strength reduction of Palacos R.
Derived from: Moran, et al16

Figure 3. Graph showing the in vivo elution of Tobramycin and Vancomycin from bone cement. Local antibiotic levels exceed minimum inhibitory concentrations for most susceptible pathogens.
From: Duncan and Masri6
In Europe, the most commonly used and studied antibiotic in ALBC is Gentamicin.6,7,12,13 Dosages of 0.5 to 1.0g of Gentamicin per 40g pack of bone cement have been studied in a prospective randomized manner and have been determined to be clinically safe when prepared as a premixed industrial product.20 Currently, the most commonly used antibiotic in North America is Tobramycin.10 Recently, the cost and availability of Tobramycin has become increasingly volatile. Gentamicin has recently become available in a sterilized powdered form for those surgeons who desire to hand mix an aminoglycoside into bone cement. A variety of antibiotics have been used and include cefuroxime,3,4,14 erythromycin,17 colistin,17 and penicillin.19 Certain antibiotics, such as lincomycin and tetracycline, are heat labile and are deactivated by the polymerization process.9

EXISTING EVIDENCE

There are a number of studies that have evaluated the use of ALBC as a method of prophylaxis in the clinical setting.2,4,7,12-14 In a report from the Swedish Registry, 92,675 patients undergoing primary, cemented THR, the use of ALBC was a significant factor in the reduction of deep infection (p < 0.001).15 An additional study detailed from the Norwegian Registry reports the results of 10,905 primary, cemented THRs performed for osteoarthritis of the hip.7 Adjustments for gender, age, brand of cement, prosthesis, type of operating theatre, and operating time were made. The lowest rate of revision for infection was found among patients receiving ALBC plus systemic antibiotics, whereas the revision rate for patients receiving systemic antibiotics only was 4.3 times greater (p=0.001). In patients with ALBC only it was 6.3 times greater (p=0.003); and in those who did not receive any antibiotics it was 11.5 times greater (p=0.002).7 (Figure 4) This study clearly differentiates the significance of antibiotic inclusion as a means of infection prevention in THR.

HIGH RISK PATIENTS

Patients with medical co-morbidities or a requirement for immunosuppressive medications are considered to be at higher risk for the onset of postoperative deep infection.3,8,9 It seems logical that these high-risk patients undergoing primary joint replacement are considered to be candidates for the use of ALBC as an additional method of antibiotic prophylaxis. The case has also been made for the use of ALBC in revision joint arthroplasty for all patients irrespective of their underlying medical risks.18

- Inflammatory arthropathies: rheumatoid arthritis, systemic lupus erythematosus
- Disease-, drug- or radiation-induced immunosuppression
- Insulin-dependent (Type-I) diabetes
- Previous joint infections
- Malnourishment
- Hemophilia
CAVEATS

The question is whether or not ALBC should be used as a method of infection prevention in all primary or revision arthroplasties or whether its use should be restricted to the high-risk patient. The primary reasons for avoiding the indiscriminate use of ALBC include:

- emergence of antibiotic-resistant bacteria
- occurrence of an allergic or toxic reaction to the antimicrobial agent

Although there has been little evidence for emerging resistance, one report is concerning. In a study of 91 infected hip replacements caused by coagulase negative staphylococci, 31 of 34 (88%) patients who had the original hip arthroplasty performed with Gentamicin-bone cement had an organism resistant to Gentamicin. In the patients who had not received Gentamicin-bone cement, only 9 of 57 (16%) patients had an organism resistant to Gentamicin (Figure 5).

![Figure 5. Derived from: Hope et al.](11)

Additionally, the American Academy of Orthopaedic Surgeons Committee on Infections has issued an advisory statement on limiting the use of Vancomycin-impregnated cement in only those situations of established infection. Evidence suggests that it is contributory to the development of antibiotic-resistant bacteria.

EPILOGUE

- The use of ALBC as a means of prophylaxis in reducing the infection rate following arthroplasty has merit based on the clinical studies available.

- However, because of potential side effects of developing antibiotic-resistant bacteria, allergenicity, and toxicity, it may not be appropriate to use ALBC in all primary joint replacement patients. Vancomycin is one whose prophylactic administration should be limited to established infections.

- Currently, ALBC as a premixed industrial product does not have FDA approval. As such there are no established guidelines for its use in joint arthroplasty procedures.

- ALBC used for infection prophylaxis in joint arthroplasty should employ a ratio of 0.5-1.0g of antibiotic powder per 40g pack of bone cement, which provides high tissue levels without compromising material properties.

- Based on the available evidence, caveats, and downsides of hand mixing, the use of industrial premixed antibiotics in the prevention of joint infection appears warranted.
REFERENCES
